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Cell adhesion is an essential biological process. However, previous theoretical and experimental studies
ignore a key variable, the changes of cellular volume and pressure, during the dynamic adhesion process.
Here, we treat cells as open systems and propose a theoretical framework to investigate how the exchange
of water and ions with the environment affects the shape and dynamics of cells adhered between two
adhesive surfaces. We show that adherent cells can be either stable (convex or concave) or unstable
(spontaneous rupture or collapse) depending on the adhesion energy density, the cell size, the separation of
two adhesive surfaces, and the stiffness of the flexible surface. Strikingly, we find that the unstable states
vanish when cellular volume and pressure are constant. We further show that the detachments of convex
and concave cells are very different. The mechanical response of adherent cells is mainly determined by the
competition between the loading rate and the regulation of the cellular volume and pressure. Finally, we
show that as an open system the detachment of adherent cells is also significantly influenced by the loading
history. Thus, our findings reveal a major difference between living cells and nonliving materials.
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Adhesion of cells to an extracellular matrix or another cell
plays a fundamental role in many physiological processes,
such as cell migration, wound healing, cell recognition, and
rigidity sensing [1–5]. The adhesion strength and the rupture
force are the key parameters to characterize cell adhesion.
Consequently, the quantitative measurement of these prop-
erties of adhesive cells is essential for understanding the
fundamental mechanisms of the adhesion-related processes
and phenomena.
With the development of experimental techniques, such as

micropipette aspiration [6–8], atomic force microscopy
[9,10], optical tweezing [11], and microplate manipulation
[12–16], the properties of cell adhesion and cell deform-
ability have been extensively explored experimentally.
Conventionally, the extraction of these properties from
experimental data is mostly based on contact mechanics
models [17,18], the Young-Dupré equation [6,19], or the
model proposed by Brochard-Wyart and de Gennes [20–22].
In these models, cell volume is either assumed to be constant
or totally ignored. However, when cells suffer from large
deformation, cell volume, cortical tension, and hydrostatic
pressure usually change dramatically [23–29] due to the
extensive exchange of water and ions with the environment.
For example, cell volume can increase by 30% during the
mitotic cell rounding from the adherent state [25], and
decrease by 30% under shear stress [26,27]. Cell volume can
also change more than 40% due to osmotic shocks [28,29].
However, in such a nonequilibrium open system, how the
shape and dynamics of adherent cells are affected by the
cellular volume and pressure regulation is still elusive.
To answer this question, we focus on cells adhered

symmetrically between two surfaces (Fig. 1) as frequently

used in atomic force microscope, microplate manipulation,
and micropipette aspiration experiments. One adhesive
surface can be treated as a rigid body, and the other can
be regarded as a cantilever with an equivalent spring
stiffness [Fig. 1(c)]. First, the fixed end of the cantilever
is moved downward d0 to compress a spherical cell with an

FIG. 1. Schematic of cells adhered symmetrically between an
adhesive surface and a cantilever. Panels (a) and (b) show convex
and concave cells observed in experiments (adapted from
Ref. [15] with permission). (c) The deflection of the cantilever
is δ ¼ Fl3=3EI, where F is the force applied by the cell and EI is
the bending stiffness of the cantilever. Thus, the cantilever can be
treated as a spring with a stiffness of k ¼ 3EI=l3 and zero rest
length. In (d) and (e), the cell shape is cylindrically symmetric
and can be described by rðsÞ and zðsÞ, where s is the arc length.
θðsÞ is the tangential angle of the arc length, and θ0 is the contact
angle. So the cell is convex when θ0 < 90° and concave when
θ0 > 90°. ra is the adhesion radius. H is the cell height and H0 is
the separation of the adhesive surface and cantilever. dðtÞ is the
displacement of the fixed end of the cantilever. (f) The loading
and unloading process.
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initial radius of r0 [Fig. 1(f)]. Then, we stop and hold the
cantilever for a duration of tw. After the waiting time tw,
the cell becomes either convex [Fig. 1(a)] or concave
[Fig. 1(b)] due to adhesion, although the cell is always
convex initially. Finally, the cantilever is moved upward at
a speed kd to induce detachment [Fig. 1(f)].
We treat cells as open systems, i.e., water and ions can

pass through the cell membrane passively or actively.
Therefore, the time evolution of the cellular volume V
and the total number of ions n due to the transport of water
and ions are [23]

dV
dt

¼ −LpAeffðΔP − ΔΠÞ; ð1Þ

dn
dt

¼ AeffðJout þ JinÞ; ð2Þ

where Aeff is the effective surface area, i.e., the difference
between the total surface area and the adhesion area. Lp is
the membrane permeability rate to water. ΔP and ΔΠ are
the hydrostatic and osmotic pressure differences, respec-
tively. Jout reflects the ion efflux due to the opening of
passive mechanosensitive channels. Jin describes the influx
of ions through ion pumps that actively pump ions into the
cell. More details of the model are specified in the
Supplemental Material [30].
The cell is surrounded by the cortical layer and cell

membrane. Therefore, both the cortical tension Tcortex and
membrane tension Tm contribute to the total surface tension
Ts, i.e., Ts ¼ Tcortex þ Tm [63,64]. The cortical layer is
modeled as a fluidlike layer with a constant active stress σa
[65]. The stress in the cortical layer σcortex is described by
σcortex ¼ η_εA þ σa [66], where _εA is the strain rate of the
cellular surface area and η is the viscosity of the cortical
layer. Thus, the cortical tension is Tcortex ¼ σcortexhc, where
hc is the thickness of the cortical layer. The membrane
tension is related to the membrane stress σm by
Tm ¼ σmhm, where hm is the membrane thickness. We
can consider an equivalent surface stress σ in these
two layers as Ts ¼ σh, where h ¼ hm þ hc. Therefore,
the surface stress can be determined by σðhm þ hcÞ ¼
σcortexhc þ σmhm. We can use a membrane reservoir model
or a viscoelastic model to describe the membrane stress (see
the Supplemental Material [30] for details), but we find the
results of these two models are qualitatively the same
(Figs. S3 and S5 of Ref. [30]). So we use the reservoir
model for the simulations in the main text.
The force balance yields

2πσhr sin θ ¼ ΔPπr2 þ F; ð3Þ

where θ is the tangential angle of the arc length, r is the cell
radius, and F is the external force applied by the cantilever
(Fig. 1). Notice that F is positive when the cell is stretched.

The contact angle θ0 defined in Figs. 1(d) and 1(e) is
given by the Young-Dupré equation as

Γ ¼ σhð1 − cos θ0Þ; ð4Þ

where Γ is the adhesion energy density between the cell and
substrate. When Γ ¼ 0, Eq. (4) is reduced to θ0 ¼ 0, which
is the situation discussed previously [23]. In general, Γ can
vary with time due to the binding and unbinding of the
ligand-receptor bonds. The time evolution of Γ is (see the
Supplemental Material [30] for details)

dΓ
dt

¼ Γ0k0off

�
1 −

Γ
Γ0

exp

�
aFVe

kBTΓπr2a

��
; ð5Þ

where Γ0 is the equilibrium adhesion energy density when
F ¼ 0, and k0off is the dissociation rate of ligand-receptor
pairs when F ¼ 0. ra is the adhesion radius, a is the
characteristic length of the bond deformation, Ve is the
rupture energy of a single bond [67], kB is Boltzmann’s
constant, and T is the absolute temperature. Notice that at
the steady state (dΓ=dt ¼ 0), the equilibrium adhesion
energy density Γs for nonzero F depends on the external
force, i.e., F ¼ ðkBTΓsπr2a=aVeÞ lnðΓ0=ΓsÞ.
First, we consider the dynamic adhesion with constant

H0 (the end of the cantilever is fixed). Here, we assume Γ0

is very small (weak adhesion) and the waiting time tw
defined in Fig. 1(f) is long enough so that the cell has
already reached the steady state. Then, we suddenly
increase Γ0 to find a new steady state. In this case, the
contact angle θ0 and adhesion radius ra increase with time
[Fig. 2(a), and Fig. S8 of Ref. [30]]. Meanwhile, the tip of
the cantilever moves downward so that cell height H
decreases and F increases until the cell reaches its new
steady state.
For small Γ0, we find the steady cell shape is convex

(θ0 < 90°), but the cantilever can apply a pulling (F > 0) or
pushing (F < 0) force [Fig. 2(a), and Movies S1 and S2 of
Ref. [30]]. For large Γ0, the cell undergoes a transition from
a convex shape to a concave shape as ΓðtÞ increases with
time [light green curve in Fig. 2(a), subplot (II), and Movie
S3 of Ref. [30]], and F changes from a pushing force to a
pulling force. Therefore, there is a critical Γ0, above which
the steady adherent cell is concave (θ0 > 90°). Besides Γ0,
we find the separation between the two adhesive surfaces
H0 can also affect the steady cell shape. The cell is more
likely to be concave for larger H0, as shown in the phase
diagram [Fig. 3(a)].
Interestingly, we find that the steady cell shape depends

not only on Γ0 and H0, but also on the initial cell size r0,
i.e., the radius of the spherical cells in suspension. If we
decrease r0 from 18 μm [Fig. 3(a)] to 10.5 μm [Fig. 3(b)],
another region appears in the phase diagram [dark green
region in Fig. 3(b), and Movie S4 in Ref. [30]], where
the “spontaneous rupture” of cells occurs due to the
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adhesion-induced tension increases. The membrane tension
increases rapidly and its time derivative is diverging at the
time of rupture [dark green curves in Figs. S9(e) and S10(e)
[30]]. In reality, when the tension is bigger than some
critical value, the membrane and cortex will break. Here,
because we did not consider the breakage of the membrane
and cortex in the constitutive law, the membrane tension
will keep increasing before cell rupture. This is similar to
the rupture of red blood cells due to strong adhesion [68].
Mathematically, it indicates that for small cells there is a
critical tension or cell height beyond which no catenoidlike
solution exists [69]. The critical condition for the tension-
induced rupture is given by Eq. (S48) in the Supplemental
Material [30]. In this case, cell height H first decreases and
then increases [dark green line in Fig. 2(b), subplot (III),
and Movie S4 of Ref. [30]]. In contrast, F first increases
and then decreases.
If the cantilever stiffness k decreases from 0.5 N=m

[Fig. 3(b)] to 0.005 N=m [Fig. 3(c)], another region will
emerge in the phase diagram [orange regions in Figs. 3(c)
and 3(d), and Movie S5 of Ref. [30]]. In this case, the cell
collapses to H ¼ 0 when Γ0 is large [inset in Fig. 3(d),
orange region]. This is because under strong adhesion the

cantilever is too soft to sustain the pulling force applied by
the cell. Notably, the cell is easier to collapse for smallerH0

[Figs. 3(c) and 3(d)]. Moreover, when k and H0 are small
enough, the cell may never become concave as Γ0

increases. Instead, the cell will collapse at the convex stage
[the left side of point A in Fig. 3(c)]. In fact, recent
experiments found that when a cell spreads between a
flexible microplate and a rigid microplate, the cell height
can decrease to almost zero [15]. This is similar to but
slightly different from the cell collapse we found here since
the adhesion energy density used in the experiment is
usually not very large and the occurrence of the full
collapse may also be prevented by the resistance of cell
organelles.
Strikingly, when cell volume is conserved during the

spreading, the two unstable states (spontaneous rupture and
collapse) vanish in the phase diagram (Fig. S11 [30]), and it
is very hard for the cells to form a concave shape when k is
small. Therefore, the regulation of cell volume and pressure
directly induces the unique behaviors of spontaneous
rupture and collapse we found here.
Now, we investigate the dynamic detachment of convex

and concave cells. Here, we assume tw is long enough so
that the cell can reach the steady state after tw (Fig. 1).
Then, the fixed end of the cantilever is moved upward with
a speed kd to detach the cell. Here, we neglect the dynamics
of Γ during detachment; i.e., Γ is constant, since we want to
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FIG. 2. Dynamic adhesion of cells adhered to an adhesive
surface and a cantilever. (a) r0 ¼ 18 μm, k ¼ 0.5 N=m;
(b) r0 ¼ 10.5 μm, k ¼ 0.5 N=m; (c) r0 ¼ 10.5 μm, k ¼
0.01 N=m. The parameters H0 and Γ0 used here are marked
by stars in Fig. 3. Other parameters are the same (Table S1 of
Ref. [30]). The subplots show (I) external force F, (II) contact
angle θ0, and (III) cell height H. The red, light blue, and light
green curves represent the dynamic process of reaching the three
stable states: (1) the cell is convex (θ0 < 90°) and F < 0; (2) the
cell is convex and F > 0; (3) the cell is concave (θ0 > 90°) and
F > 0. The dark green and orange curves represent the sponta-
neous rupture and collapse of cells. The color of these curves
corresponds to the color of the phase diagrams in Fig. 3. The
dashed lines in subplots (I) and (II) indicate the lines of F ¼ 0
and θ0 ¼ 90°, respectively.
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FIG. 3. Phase diagrams of cell shapes for various cantilever
stiffnesses k and cell sizes r0. (a) r0 ¼ 18 μm, k ¼ 0.5 N=m;
(b) r0 ¼ 10.5 μm, k ¼ 0.5 N=m; (c) r0 ¼ 10.5 μm, k ¼
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unstable regions (dark green and orange regions). The stars
indicate H0 and Γ0 used in Fig. 2. The blue circles in (b) and (d)
are the theoretical predictions for the critical condition of the
tension-induced rupture [30]. The inset in the orange region of (d)
shows the collapse of the cell as Γ0 increases.
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focus on how cell volume regulation influences cell
detachment. For convex cells, F first increases and then
decreases slowly after reaching its maximum as the
displacement d increases [Fig. 4(a)]. At steady state, there
are two types of convex cells (F < 0 or F > 0). So F could
be negative or positive initially. However, we find that the
detachment processes of these two kinds of convex cells are
qualitatively the same (Fig. S12 [30]). For concave cells,
however, F is always positive and F decreases as d
increases [Fig. 4(g)], which is very similar to the rupture
of liquid bridges [70–73].
We find that the response of cells greatly depends on the

loading rate kd. If kd is much larger than the speed of water
and ion transport, the flux of water and ions is negligible
and the cell volume is almost conserved [Figs. 4(b) and
4(h)]. In contrast, if kd is comparable to or even smaller
than the speed of water and ion transport, the change of cell

volume is significant and it will greatly influence the
hydrostatic pressure difference, membrane tension, and
contact angle (Fig. 4). Interestingly, cell volume increases
(cell swelling) for convex cells [Fig. 4(b)], while it
decreases (cell shrinkage) for concave cells [Fig. 4(h)]
during detachment. Furthermore, under small kd, the
membrane reservoir can be activated for convex cells
[Fig. 4(e)], since the cell volume (surface area) increases
remarkably. Thus, there are some windings on the curves of
ΔP, Tm, and θ0. Depending on the cell volume change and
kd, the membrane tension Tm could increase or decrease
and it is not monotonic [Figs. 4(e) and 4(k)]. The change
of θ0 [Figs. 4(f) and 4(l)] is inverse to the change of Tm
due to the constraint of the Young-Dupré equation
[Eq. (4)]. Therefore, θ0 is not constant, which indicates
the assumption of constant θ0 used previously [20] might
be invalid if cells are treated as open systems.
For convex cells, the adhesion radius ra first decreases

steadily as d increases and then drops sharply when cell
adhesion begins to rupture [Fig. 4(d)]. Conversely, for
concave cells, ra does not always decrease, but increases
rapidly before the rupture [Fig. 4(j)]. This may be because
convex cells rupture at the contact surfaces, while concave
cells rupture at the necking equatorial section. These
rupture forms are very similar to the rupture of liquid
bridges [74].
Strikingly, our results for the dynamic spreading and

detachment can quantitatively explain many existing exper-
imental data (Fig. S13 [30]). Furthermore, we find the
dynamic detachment of adherent cells also depends on
loading history. To demonstrate it, we assume that the cell
has already reached a steady state, and then we apply the
loading-unloading process in Fig. 1(f) with various waiting
times tw. We find that the force, cell volume, contact angle,
and other variables are very different (Fig. 5). This is
because tw is not long enough. Thus, the cell has not
reached steady state before the cantilever is moved upward.
In fact, the loading-unloading process in Fig. 1(f) is widely
used in experiments [12–15], where the minimum tw
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needed to reach steady state can be affected by many
factors, such as loading speed kc, compression depth d0,
cell size, and cell type. Therefore, if tw is not long enough,
the mechanical response of cells in different experiments
may not be comparable to each other.
In conclusion, we treated cells as open systems and

studied how cell volume and pressure regulation influence
the shape and dynamics of adherent cells. Our work showed
that the mechanical response of living cells significantly
depends on the complex interplay of cell volume change,
loading rate, and loading history. Therefore, water and
ion exchange with the environment is an essential factor
that discriminates living cells from nonliving materials.
Our findings may also have important implications for
other biological processes accompanied by significant cell
volume changes, such as mitotic cell rounding, cell defor-
mation due to external forces, and haptotaxis or durotaxis
induced by heterogeneous adhesion energy density or
substrate stiffness.
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I. MODEL

A. Cell shape, effective surface area, and cellular volume

We assume that the cell shape is cylindrically symmetric and can be described by (r(s), z(s)), where s is arc length
(Fig. S1). Similar to previous works (Yoneda, 1964; Evans et al., 1980; Fischer-Friedrich et al., 2014), we deduce the
two shape variables r(s) and z(s) mostly based on the force balance condition

2πσhr sin θ = ∆Pπr2 + F, (S1)

where r is the cell radius, θ is the tangential angle of arc length, ∆P is the hydrostatic pressure differences, F is
the external force (see Fig. S1). We assume that F is positive when cell is stretched, and F is negative when cell is
compressed. To simplify the problem, the membrane and cortex can be modeled as a single layer with an equivalent
stress σ. And h is the thickness of this layer, i.e., h = hm + hc, where hm is the thickness of membrane layer and hc
is the thickness of cortical layer. From the force balance equation, we have

sin θ = Ar +B/r, (S2)

∗Corresponding author. jianghy@ustc.edu.cn
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FIG. S1 Schematic of the convex cell (a) and concave cell (b) adhered symmetrically between an adhesive surface and a
cantilever. The adhesive surface is rigid while the cantilever is flexible. And the cantilever is treated as a spring with a stiffness
of k and zero rest length. Therefore the external force exerted on cell due to the deflection of cantilever is F = kδ, where δ is
the deflection of the cantilever. We describe the cell shape (r(s), z(s)) under the arc length coordinate, i.e., s with arrow in
(a) and (b). θ(s) is the tangential angle. sl is the total arc length of cell. The adhesion radius is ra, and the contact angle is
θ0. H is the height of cell and H0 is the separation of the adhesive surface and cantilever. d(t) is the displacement of the fixed
end of the cantilever.

where A = ∆P/(2σh) and B = F/(2πσh).
Furthermore, the two shape variables r(s) and θ(s) are related through the geometrical relation

dr

ds
= cos θ. (S3)

Substituting Eq. S2 into Eq. S3 yields

dr

ds
= ±

√
1− (Ar +

B

r
)2, (S4)

where the positive and negative signs are taken for θ < 90o and θ > 90o, respectively. Integrating Eq. S4, we can
obtain

±2As = − arccos
2A2r2 − (1− 2AB)√

1− 4AB
+ C0 when 1− 4AB > 0, (S5)

where C0 is an integration constant. C0 is determined by enforcing r(0) = ra, where ra is the adhesion radius. On the
lower boundary θ(0) = θ0, where θ0 is the contact angle. Therefore, on the boundary, we get sin θ0 = Ara+B/ra based
on Eq. S2. Notice that in this problem 1−4AB ≥ 0 is always true since 1−4AB = (1−2Ara)2 +4Ara(1−sin θ0) ≥ 0.
When the cell is cylindrical, 2Ara = 1 and sin θ0 = 1. Therefore, in this case 1 − 4AB = 0 and the above solution
in Eq. S5 does not exist. Thus, when cell is cylindrical we use another method to obtain the cell shape and we will
discuss this in the section II.

From Eq. S5, we can obtain the cell radius r(s) as

r2 =
1

2A2
[Q1 +Q2 cos(2As∓ α0)] , (S6)

where Q1 = 1− 2AB, Q2 =
√

1− 4AB, and α0 = arccos
[
(2A2r2a −Q1)/Q2

]
. In contrary to Eq. S4, the positive and

negative signs are taken for θ > 90o and θ < 90o in Eq. S6, respectively.
We can also obtain z(s) by integrating dz/ds = sin θ as

z(s) =
1

A
√

2(Q1 +Q2)

[
(Q1 +Q2)E2(As± α0

2
, G) + 2ABE1(As± α0

2
, G)

]
+ C1, (S7)

where C1 is a constant and G = 2Q2/(Q1 + Q2). E1(θ,B) and E2(θ,B) are the incomplete elliptic integrals of the
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first and second kind, respectively.

E1(θ,m) =

∫ θ

0

1/
√

1−m sin2 xdx,

E2(θ,m) =

∫ θ

0

√
1−m sin2 xdx.

The boundary conditions for z(s) are

z(0) = 0,

z(sl) = H = 2r0 + [d(t)− δ] ,

where sl is the total arclength, H is the cell height (Fig. S1), and r0 is the initial cell radius, i.e., the radius of the
spherical cells in suspension. d(t) is the displacement of the fixed end of the cantilever, and δ is the deflection of the
cantilever (Fig. S1). The arc length sl is established by the condition r(sl) = ra. Therefore, from Eq. S6, we have
sl = α0/A and sl = (π − α0)/A for convex cells and concave cells, respectively. From the boundary conditions, we
can obtain the cell height H.

For convex cells,

H =

√
2

A
√
Q1 +Q2

[
(Q1 +Q2)E2(

α0

2
, G) + 2ABE1(

α0

2
, G)

]
. (S8)

For concave cells,

H =

√
2

A
√
Q1 +Q2

{
(Q1 +Q2)

[
E2(

π

2
, G)− E2(

α0

2
, G)

]
+ 2AB

[
E1(

π

2
, G)− E1(

α0

2
, G)

]}
. (S9)

The effective surface area Aeff (the difference between the total surface area and the contact area) and cellular
volume V can be calculated according to Aeff =

∫ sl
0

2πr(s)ds and V =
∫ sl
0
πr(s)2 sin θ(s)ds.

For convex cells,

Aeff =
2
√

2π

A2

√
Q1 +Q2E2(

α0

2
, G), (S10)

V =

√
2π

6A3

{
2
√
Q1 +Q2(3AB + 2Q1)E2(

α0

2
, G) + (Q2 −Q1)

√
Q1 +Q2E1(

α0

2
, G)

+Q2 sinα0

√
Q1 +Q2 cosα0

}
. (S11)

For concave cells,

Aeff =
2
√

2π

A2

√
Q1 +Q2

[
E2(

π

2
, G)− E2(

α0

2
, G)

]
, (S12)

V =

√
2π

6A3

{
2
√
Q1 +Q2(3AB + 2Q1)

[
E2(

π

2
, G)− E2(

α0

2
, G)

]
+(Q2 −Q1)

√
Q1 +Q2

[
E1(

π

2
, G)− E1(

α0

2
, G)

]
−Q2 sinα0

√
Q1 +Q2 cosα0

}
. (S13)

B. Cellular volume and pressure regulation

The time evolution of cellular volume V and ion number n due to the water and ions transport are given as

dV

dt
= −LpAeff (∆P −∆Π), (S14)

dn

dt
= Aeff (Jout + Jin). (S15)

where Aeff is the effective surface area without considering the adhesion area since there are no ion and water
transport across the contact surfaces. Lp is the rate of membrane permeability to water. ∆P = Pin − Pout and
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∆Π = Πin −Πout are hydrostatic and osmotic pressure differences, respectively. The osmotic pressure inside the cell
can be determined by the Van’t Hoff equation Π = cRT , where c = n/V is the concentration of solutes, R is the gas
constant, and T is the absolute temperature. For the time evolution of ion number, Jout is the ion efflux due to the
opening of mechanosensitive channels, and Jin is the influx of ions through active ion pumps.

For a mechanosensitive channel, the opening probability Popen is a Boltzmann function of the surface tension
(Sukharev et al., 1993). After approximating the Boltzmann function by a piecewise linear function (Jiang and Sun,
2013), we have

Jout =

 0 if σ < σc,
−β(σ − σc)∆Π if σc ≤ σ ≤ σs,
−β(σs − σc)∆Π if σ > σs.

(S16)

where β is the rate constant of efflux, σc and σs are the threshold stress (below which no mechanosensitive channel is
open) and saturating stress (above which all mechanosensitive channels are open) of the mechanosensitive channels,
respectively.

In addition to mechanosensitive channels, ion transporters actively pump ions against concentration gradients. In
order to overcome the energy barrier from the ion concentration gradient, ion transporters utilize energy from ATP
hydrolysis. We denote ∆Ga as the free energy input during the pumping action. The free energy change during the
pumping action is ∆G = RT log(cin/cout) − ∆Ga, where cin and cout are the ion concentration inside and outside
the cell, respectively. The ion flux across transporters can be modeled as Jin = −γ′∆G, where γ′ is a constant. By
assuming cin− cout � cin, ∆G can be linearized as ∆G ≈ RT (cin− cout)/cout−∆Ga = RT (Πin−Πout)/Πout−∆Ga.
Therefore, the influx of ions can be described by (Jiang and Sun, 2013)

Jin = γ(∆Πc −∆Π) (S17)

where γ is a constant and ∆Πc = Πout[exp(∆Ga/RT )−1] is the critical osmotic pressure difference related to osmotic
pressure outside the cells. The critical osmotic pressure difference is the osmotic pressure difference above which the
energy input from ATP is insufficient for ion transporters to pump ions against the concentration gradient. The free
energy from a mole ATP is ∆Ga ≈ 30kJ , and the osmotic pressure of the growth medium is Πout = 0.5MPa, which
yields a critical osmotic pressure difference ∆Πc ≈ 30GPa.

C. Constitutive laws of the cortical layer and membrane layer

The surface tension of the cell, Ts, is the combined result of cortical tension, Tcortex, and membrane tension, Tm,
i.e., Ts = Tcortex + Tm (Dai and Sheetz, 1999; Diz-Muñoz et al., 2013). The cortical tension is related to the cortical
stress as Tcortex = σcortexhc, where hc is the thickness of cortical layer and σcortex is the cortical stress. The membrane
tension is Tm = σmhm, where hm is the thickness of membrane and σm is the membrane stress. We can define an
equivalent surface stress σ in the combined layer by σh = Ts, where h = hm + hc. Therefore, the surface stress can
be determined by σ(hm + hc) = σcortexhc + σmhm.

1. The constitutive law of cortical layer

The cortical layer can be modeled as a fluid-like layer with an active stress. Thus, the constitutive law of the
cortical layer is given as

σcortex = ηε̇A + σa, (S18)

where η is the viscosity of cortical layer, ε̇A is the strain rate of cellular surface area, and σa is the active stress of
cortical layer due to the contraction of myosin motors.

2. The reservoir model of membrane

It is well known that the presence of membrane reservoirs can buffer the increase of membrane tension during the
changing of cellular shape (Raucher and Sheetz, 1999; Figard and Sokac, 2014; Sinha et al., 2011). In the tether
experiment carried out by Raucher et al with optical tweezers (Raucher and Sheetz, 1999), it has been found that the
tether force shows three phases, i.e., an initial phase (the tether force increases with the tether length), an elongation
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FIG. S2 The constitutive law of cell membrane after considering the membrane reservoirs. Membrane stress increases linearly
with cellular surface area in the initial phase. And the membrane stress is independent on cellular surface area in the reservoir
phase. In the third phase, the membrane stress increases exponentially with surface area, i.e., σm ∝ En[eb(A−Ac)/A0 −1], where
b and En are constant. As is the critical surface area where the reservoir is activated, and Ac is the critical surface area when
the reservoir is depleted.

phase (the tether force is constant, buffered by the membrane reservoir) and an exponential phase (the tether force
increases exponentially with the tether length).

The tether force is an indicator of the effective membrane tension. Thus, according to this experimental result, we
model the membrane stress σm as a function of cellular surface area A as (see Fig. S2)

σm =

 Em(A−A0)/A0 if A < As,
Em(As −A0)/A0 if As ≤ A ≤ Ac,
Em(As −A0)/A0 + En[eb(A−Ac)/A0 − 1] if A > Ac,

(S19)

where Em is the elastic modulus of membrane in the initial phase, A is the deformed surface area, A0 is the reference
surface area, As is the critical surface area where the reservoir is activated, and Ac is the critical surface area where
the reservoir is depleted. Therefore, Ac/As−1 is proportional to the size of membrane reservoir, and the reservoir size
found in experiment is in the range of 1% ∼ 30% (Figard and Sokac, 2014; Sinha et al., 2011; Kosmalska et al., 2015).
After the depletion of membrane reservoir, we assume the membrane stress, σm, is an exponential function of cellular
surface area, i.e., σm ∝ En[eb(A−Ac)/A0−1], where b and En are constant. When Ac = As, Em = bEn, and (A−Ac)/A0

is small, this constitutive law of the membrane reduces to an elastic constitutive law, i.e., σm = Em(A−A0)/A0. For
simplicity, we assume bEn = Em in our simulations. Substituting Eq. S18 and Eq. S19 into hσ = hmσm + hcσcortex,
we can obtain the constitutive law of surface stress σ.

As shown in Fig. S3, for different b and reservoir size Ac/As, the qualitative results of the phase diagram of the
dynamic adhesion are the same. These results indicate that the adhesion behaviors, studied in this work, are not
sensitive to the constitutive law of membrane.

3. The viscoelastic model of membrane

We can also use a viscoelastic model for the membrane. In this case, the general viscoelastic constitutive law of
membrane layer is

σm + a1σ̇m = b0εA + b1ε̇A, (S20)

where σ̇m is the stress rate of membrane layer, εA is the area strain, a1, b0 and b1 are constants. This viscoelastic
constitutive law can be reduced to Kelvin-Voigt model when a1=0, Maxwell model when b0=0, three-element Kelvin
model, and three-element Maxwell model.

Based on the constitutive laws of cortical layer and membrane, i.e., Eq. S18 and Eq. S20, we obtain

hσ + a1hσ̇ = hc(ηε̇A + σa) + a1hcηε̈A + hm(b0εA + b1ε̇A). (S21)

When we use the three-element Maxwell model to describe the deformation of membrane (Fig. S4), the constitutive
law of membrane Eq. S20 becomes

σm + ηm/E1σ̇m = E0εA + (E1 + E0)ηm/E1ε̇A, (S22)
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FIG. S3 The phase diagrams of cell shapes for various stiffness of cantilever k and cell size r0, when we consider the effect of
membrane reservoir for different b and reservoir size Ac/As. (I) b = 1 and Ac/As = 1.1; (II) b = 2 and Ac/As = 1.1; (III)
b = 2 and Ac/As = 1.2; (IV) b = 3 and Ac/As = 1.1. In each subfigure, (a) r0 = 18µm, k = 0.5N/m; (b) r0 = 10.5µm,
k = 0.5N/m; (c) r0 = 10.5µm, k = 0.005N/m; (d) r0 = 10.5µm, k = 0.01N/m. We can find that for different constitutive
laws, the qualitative results of dynamic adhesion are the same.

where E1 and E0 are the two spring constants of the three-element Maxwell model, and ηm is the viscosity of membrane
(Fig. S4).

Therefore the constitutive law of surface stress Eq. S21 becomes

hσ + ηm/E1σ̇h = hc(ηε̇A + σa) + hcηηm/E1ε̈A + hm[E0εA + (E1 + E0)ηm/E1ε̇A]. (S23)

The elastic modulus of membrane ranges from 104 Pa to 107 Pa (Hochmuth and Mohandas, 1972; Hochmuth et al.,
1973; Evans, 1989; Picas et al., 2012). Therefore, we take E0 = 100 kPa and E1 = 40 kPa in our simulation. It has
been shown that the relaxation time of membrane is on the order of 0.1 second (Evans, 1989; Rand, 1964; Hochmuth
and Waugh, 1987), which gives the ratio of the membrane viscosity, ηm, to the elastic modulus E1. Thus, we take
ηm = 4000 Pa · s. The viscosity of cortical layer measured in experiments is about 102 ∼ 103Pa · s (Evans and Yeung,
1989; Bausch et al., 1999; Koay et al., 2003; Bausch et al., 1998), so we take η = 5000Pa · s.

We find that the qualitative results of the viscoelastic model are the same with the results of the reservoir model
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FIG. S4 The fluid-like cortical layer model with active contraction and the three-element Maxwell model of cell membrane.
The cell surface stress σ is the combined effect of membrane stress and cortical stress since these two layers are connected in
parallel. η is the viscosity of cortical layer and σa is the active stress of cortex. E1 and E0 are the two spring constants of the
three-element Maxwell model, and ηm is the viscosity of membrane.

(compare Fig. S5(I) with Fig. S3). Therefore, we will take the reservoir model, Eq. S19, to describe the deformation
of membrane in our main text.

4. The contribution of the viscosities of cortex and membrane

To investigate the roles of the viscosities of cortex and membrane in cell responses, we first study the dynamic
adhesion of cell when we neglect the contribution of the viscous terms in Eq. S21 and Eq. S23. In this case, the
constitutive law of surface stress reduces to an elastic constitutive law

hσ = hmEm(A/A0 − 1) + σahc, (S24)

where Em is the Young’s modulus of membrane layer, A and A0 are the deformed and reference cellular surface areas,
respectively. After takeing an elastic constitutive law for the surface stress (Eq S24), the qualitative results of the
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phase diagram of the dynamic adhesion behaviors of cell are the same with the results of the viscoelastic model (Fig.
S5 I and II).
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FIG. S6 The detachment of convex cells, when the viscosities of cortical layer and membrane layer are zero (solid curves) or
nonzero (circles, η = 5000Pa ·s and ηm=4000 Pa ·s). (a) The adhesion radius, (b) contact angle, (c) external force, (d) cellular
volume, (e) membrane tension, and (f) the hydrostatic pressure difference. The viscous properties of the cortical layer and
membrane layer only slightly affect the response of cells when kd > 10µm/s.

To what extent do the viscosities of cortex and membrane contribute to the responses of cell? As shown in Fig. S6,
we compare the detachment results of the viscoelastic constitutive law (η = 5000Pa · s and ηm=4000 Pa · s) with the
results of an elastic constitutive law (η = 0 and ηm = 0). The loading speed kd used in our simulation is 0.01 ∼ 10
µm/s since the stretch speed used in experiment is 0.1µm/s ∼ 10 µm/s (Thoumine and Meister, 2000; Colbert et al.,
2009, 2010; Chu et al., 2005). We find that the contributions of the viscosities of the fluid-like cortical layer and
membrane to the detachment of cells are significant under high stretch speed.

D. The adhesion between cells and the two surfaces

The adhesion between cells and the two surfaces can be described by the Young–Dupré equation as

Γ = σh(1− cos θ0), (S25)

where Γ is the adhesion energy density and θ0 is the contact angle.
The rate equation of the ligand-receptor bonds density ρlr is given by (Bell et al., 1978; Lin and Freund, 2007)

dρlr
dt

= konρlρr − koffρlr, (S26)

where ρl is the ligand density and ρr is the receptor density. kon and koff are the association and dissociation rates,
respectively. Here we assume that there are reservoirs for ligand and receptor so that the ligand density ρl and
receptor density ρr are constants. We further assume that the association rate kon is force independent, while the
dissociation rate koff increases exponentially with the external force f on the ligand-receptor bond according to Bell’s
model (Bell et al., 1978; Lin and Freund, 2007)

koff = k0offexp(af/kBT ), (S27)

where k0off is the dissociation rate of ligand-receptor pairs when f = 0, a is the characteristic length of the bond
deformation, kB is the Boltzmann’s constant, and T is the absolute temperature. We assume that the traction force
F is equally shared by all the bonds in the adhesion area, i.e., f = F/(πr2aρlr), where ra is the adhesion radius.
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When the bonds are unloaded, on equilibrium we have konρlρr − k0offρ0lr = 0, where ρ0lr is the equilibrium ligand-
receptor pair density when F = 0. So the rate equation reduces to

dρlr
dt

= k0offρ
0
lr − koffρlr (S28)

Substituting Eq. S27 to Eq. S28, the rate equation becomes

dρlr
dt

= k0offρ
0
lr

[
1− ρlr

ρ0lr
exp(

af

kBT
)

]
, (S29)

If we assume the rupture energy of single bond is Ve, then the adhesion energy density is Γ = Veρlr. Thus the time
evolution of Γ is

dΓ

dt
= Ve

dρlr
dt

= k0offΓ0

[
1− Γ

Γ0
exp(

aFVe
kBTΓπr2a

)

]
. (S30)

where Γ0 = Veρ
0
lr is the equilibrium adhesion energy density when F = 0.

It should be noted that if we assume that only the ligand-receptor bonds adjacent to the periphery of adhesion
region are being stretched, we only need to modify f = F/(πr2aρlr) to f = F/(πradρlr), where d is the width of the
annular region. We find the results of these two cases are qualitatively the same.

Recent experiment demonstrated that the spread radius rs is bigger than the cell body contact radius ra due to the
existence of lamellipodia (Fouchard et al., 2014). In our model, to simplify the problem we have neglected the lamella
and assumed the spread area rs is equal to the cell body contact radius ra. If we consider the difference between rs
and ra, we can simply modify f = F/(πr2aρlr) to f = F/(πr2sρlr). Therefore, we can determine the effective adhesion
energy density from Eq. S30. It should be noted that if F is bigger than a critical value Fc = kBTπr

2
aΓ0/(eaVe),

there is no steady solution in Eq. S30. However, we find that F is much smaller then Fc for the parameters used in
our simulation.

II. NUMERICAL METHOD

The analytical solution we obtained above has some limitations. It’s only suitable for simple cell shapes with
monotonically changing θ. Furthermore, the analytical solution in Eq. S6 will break down for cylindrical cells since
θ = π/2 and Eq. S3 reduces to dr/ds = 0 in this case. Consequently, it’s very necessary to develop a method to solve
for arbitrary cell shapes. Here, we obtain the cell shape by numerically solving a boundary value problem following
our previous work (Jiang et al., 2007).

At any given time t, the cell shape r(s) and z(s) can be described by the following ordinary differential equations
(Chen et al., 2014)

dr

ds
= cos θ, (S31)

dz

ds
= sin θ. (S32)

dθ

ds
=

∆P

σh
− sin θ

r
=
B1

ra
− sin θ

r
, (S33)

where B1 = ∆Pra/(σh) is an unknown dimensionless variable. Eq. S31 and Eq. S32 are the geometric relations while
Eq. S33 is deduced from Young–Laplace equation.

It is convenient to regard the effective surface area as a function of s. We define As(s) as the effective surface
area swiped by the arclength s, similarly, we can define Vs(s). Thus, As(s) and Vs(s) obey the following differential
equations

dAs
ds

= 2πr, (S34)

dVs
ds

= πr2 sin θ. (S35)

The corresponding boundary conditions are As(0) = 0, As(sl) = Aeff , Vs(0) = 0, and Vs(sl) = V , where Aeff and
V are the effective surface area and the cellular volume of the whole cell, respectively. Other boundary conditions
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include r(0) = ra, r(sl) = ra, θ(0) = θ0, θ(sl) = π − θ0, z(0) = 0, and z(sl) = 2r0 + (d− δ). Here ra is the adhesion
radius, θ0 is the contact angle, and 2r0 + (d− δ) is the cell height as we discussed in the above sections.

The arclength sl is still unknown and must be solved for along with the cell shape. To determine sl, we introduce
a new variable x with s = slx and x ∈ [0, 1] to reparametrize the problem (Jiang et al., 2007). Thus, the boundary
conditions at s = sl transform to the boundary conditions at x = 1. And the differential equations are also modified
to

dr

dx
= sl cos θ, (S36)

dz

dx
= sl sin θ, (S37)

dθ

dx
= sl

B1

r0
− sl

sin θ

r
, (S38)

dA

dx
= 2πslr, (S39)

dV

dx
= πr2sl sin θ, (S40)

dsl
dx

= 0. (S41)

In our numerical approach, we treat these differential equations as a two-point boundary value problem, and we use
the MATLAB function bvp4c to solve this boundary value problem.

III. THE CRITICAL CONDITION OF TENSION-INDUCED RUPTURE

Since cell would spontaneously rupture under strong adhesion, it is necessary to obtain the critical condition for
spontaneous rupture. The analytical relation between the equilibrium cell shape and mechanical parameters, such as
surface tension Ts, hydrostatic pressure difference ∆P , and the stiffness of cantilever k, at the time of rupture can be
determined by the following analytic model.

The free energy of the system is

G =

∫
σhdS −

∫
∆PdV,

=

∫
σh2πr(z)

√
1 + (dr/dz)2dz −

∫
∆Pπr(z)2dz (S42)

where σh is the surface tension, and ∆P is the hydrostatic pressure differences. By non-dimensionalizing the free
energy with πσhr20, the free energy then becomes

G̃ =
G

πσhr20
=

∫
2r̃
√

1 + (dr̃/dz̃)2dz̃ −
∫
B2r̃

2dz̃, (S43)

where r̃ = r/r0, z̃ = z/r0, B2 = ∆Pr0/(σh) are dimensionless variables, and r0 is the initial cell size (the radius of

the spherical cell in suspension). We minimize the energy G̃ by taking the first variational derivative with respect to
z̃ and obtain the following Euler-Lagrange equation

2r̃√
1 + (dr̃/dz̃)2

−B2r̃
2 = A2, (S44)

where A2 = F/(πσhr0) is the conserved quantity of the system. When ∆P = 0 (i.e. B2 = 0), this Euler-Lagrange
equation reduces to the shape equation of a catenoid (Powers et al., 2002). Integrating Eq. S44 yields the cell shape

z̃ =

 F1(r̃)− F1(r̃a) + H̃ when θ < π/2,

F1(r̃a)− F1(r̃) when θ ≥ π/2,
(S45)

where r̃a and H̃ are the dimensionless adhesion radius and cell height, respectively. The detailed expression of F1(r)
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is

F1(r) =

√
1 +B2

2r
2/P1

√
P2 −B2

2r
2

B2
2

√
4r2 − (A2 +B2r2)2

[
P1E2 [φ(r),−P2/P1] + 2

√
1−A2B2E1 [φ(r),−P2/P1]

]
, (S46)

where P1 = (1 −
√

1−A2B2)2, P2 = (1 +
√

1−A2B2)2, and φ(r) = arcsin(B2r/(1 +
√

1−A2B2)). E1(θ,m) and
E2(θ,m) are the incomplete elliptic integrals of the first and second kind, respectively. For given surface tension σh,
hydrostatic pressure difference ∆P , cell height H and adhesion radius ra, the equilibrium cell shape is analytically
determined by Eq. S45.

The separation between the adhesive surface and cantilever, H0, is related to the cell height, H, through H0 =
H + F/k, where F is the external force applied by the cantilever and k is the stiffness of the cantilever. After
non-dimensionalization, we have

H̃0 = H̃ +A2/k̃ = 2F1(r̃a)− 2F1(r̃min) +A2/k̃ (S47)

where r̃min is the minimum cell radius where dr̃/dz̃ = 0 at the equatorial plane (θ = π/2), and k̃ = k/(πσh) is the
dimensionless stiffness of the cantilever. Notice that, the adherent cell only ruptures at concave shape, so the cell
radius at dr̃/dz̃ = 0 is minimum. Since there is a maximum in the curve of H̃ (marked by a red dot in Fig. S7(a)),

there is a critical cell height H̃c beyond which no solution exists. It indicates that for the cell height bigger than this
critical height, there is no corresponding neck radius rmin, i.e., no corresponding equilibrium cell shape exists.

The critical condition for the tension-induced rupture is

dH̃

dA2
=

2r̃aA2B2(2−A2B2 −B2
2 r̃

2
a)

A2(A2B2 − 1)H1(r̃a)H2(r̃a)
− 2A2B2r̃min(2− 2B2r̃min)

A2(A2B2 − 1)H1(r̃min)H2(r̃min)
+

2
√
P1

√
4r̃2a − (A2 +B2r̃a)2

A2(A2B2 − 1)H1(r̃a)H2(r̃a)

[
P1E2 [φ(r̃a),−P2/P1]− 2

√
1−A2B2E1 [φ(r̃a),−P2/P1]

]
= 0, (S48)

where H1(r) =
√
P1 +B2

2r
2, and H2(r) =

√
P2 −B2

2r
2. This critical condition indicates that the contact area,

surface tension, hydrostatic pressure difference, cell height, and force should satisfy Eq. S48 at the critical point.
We also find that the critical cell height H̃c increases with decreasing cantilever stiffness k̃ (Fig. S7), which indicates

that the spontaneous rupture region shrinks as the stiffness of the cantilever decreases (Fig. 3(b) and Fig. 3(d)).
Since the spontaneous rupture region shifts right as the critical cell height, Hc, increases.

Notice that the membrane tension increases rapidly when cell begins to rupture and the corresponding curves are
almost vertical, i.e., the time derivative of membrane tension is diverging (green curves in Fig. S9(e) and Fig. S10(e)).
This means the the time derivative of cellular surface area is also diverging, since the membrane tension is proportional
to the cellular surface area (Eq. (S24)). Cells can dynamically enter “rupture” because the cell volume changes with
time (see Fig. S8, S9 and S10). Even though the cell surface (cortical layer and membrane layer) can provide resistance
to the stretch induced by adhesion, the membrane tension continues to increase with time as the cell spreads between
the adhesive surface and cantilever. Once the membrane tension or the cell height increases to the critical value
determined by Eq. (S48), the cell would not be able to bear such a high tension, and the cell would rupture and it
results in a sharp decrease in stretch force (green curves in Fig. S9(a) and Fig. S10(a)). Mathematically, it indicates
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that there is a critical tension or cell height beyond which no catenoid-like solution exists (Powers et al., 2002). This
is similar to the spontaneous rupture of red blood cells due to the high tension induced by strong adhesion (Hategan
et al., 2003). Therefore, we denote this phenomenon as “spontaneous rupture”.

IV. SUPPLEMENTARY RESULTS

A. Dynamic adhesion of cells (supplementary figures to the Fig. 3 in the main text)

We only show several variables during the dynamic adhesion of cells in the Fig. 3 of the main text. Here we show
how other variables evolve with time (see Fig. S8, Fig. S9, and Fig. S10).
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FIG. S8 Dynamic adhesion of cells adhered to an adhesive surface and a cantilever, with r0 = 18µm and k = 0.5N/m. (a)
The external force, (b) cellular volume, (c) cell height, (d) adhesion radius, (e) membrane tension, (f) the contact angle, (g)
hydrostatic pressure differences, (h) ions number, (i) the flux of water, and (j) the flux of ions. The red, light blue and light
green curves represent the dynamic process of reaching the three stable states: (1) cell is convex (θ0 < 90o) and F < 0; (2) cell
is convex and F > 0; (3) cell is concave (θ0 > 90o) and F > 0. The dash lines in (a) and (f) indicate the lines of F = 0 and
θ = 90o, respectively.
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FIG. S9 Dynamic adhesion of cells adhered to an adhesive surface and a cantilever, with r0 = 10.5µm and k = 0.5N/m. (a)
The external force, (b) cellular volume, (c) cell height, (d) adhesion radius, (e) membrane tension, (f) the contact angle, (g)
hydrostatic pressure differences, (h) ions number, (i) the flux of water, and (j) the flux of ions. The red, light blue and light
green curves represent the dynamic process of reaching the three stable states: (1) cell is convex (θ0 < 90o) and F < 0; (2) cell
is convex and F > 0; (3) cell is concave (θ0 > 90o) and F > 0. The dark green curves represent the process of spontaneous
rupture of cells. The dash lines in (a) and (f) indicate the lines of F = 0 and θ = 90o, respectively.
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FIG. S10 Dynamic adhesion of cells adhered to an adhesive surface and a cantilever, with r0 = 10.5µm and k = 0.01N/m. (a)
The external force, (b) cellular volume, (c) cell height, (d) adhesion radius, (e) membrane tension, (f) the contact angle, (g)
hydrostatic pressure differences, (h) ions number, (i) the flux of water, and (j) the flux of ions. The red, light blue and light
green curves represent the dynamic process of reaching the three stable states: (1) cell is convex (θ0 < 90o) and F < 0; (2) cell
is convex and F > 0; (3) cell is concave (θ0 > 90o) and F > 0. The dark green and orange curves represent the processes of
spontaneous rupture and collapse of cells. The dash lines in (a) and (f) indicate the lines of F = 0 and θ = 90o, respectively.

B. The phase diagrams of cell shapes when cellular volume and pressure are constant.

To keep the cell volume constant, we assume the membrane permeability rates to water and ion are suddenly
decreased to zero so that water and ion exchange between cell and environment is stopped. Therefore, we obtain
dV/dt = 0 and dn/dt = 0 from Eq. (S14) and (S15). From these equations, we get V = V0 and n = n0, where
V0 and n0 are the cell volume and ion number of the initial spherical cell, respectively. Furthermore, before the
membrane permeability rates to water and ion are suddenly decreased to zero, we have dV/dt = −α(∆P −∆Π) = 0 in
equilibrium. Therefore, we obtain the hydrostatic pressure difference as ∆P = ∆Π = n0RT/V0−Πout, where R is the
gas constant, T is the absolute temperature, and Πout is the osmotic pressure outside the cell. After the membrane
permeability rates are decreased to zero, we assume the expression of ∆P remains unchanged. Since the cell volume
V and ion number n are constant, the hydrostatic pressure difference ∆P is also constant.

As shown in Fig. S11, when the cellular volume and pressure are constant during the dynamic spreading of cell,
the cells would not spontaneously rupture or collapse. In this case, the cell is very hard to become concave when the
stiffness of the cantilever is small (the green region in Fig. S11 (c) and (d) is small).
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C. Dynamic detachment of convex cells with negative initial F

In the main text, we find that after the cells achieves their equilibrium adhesion state, the dynamic detachments
of convex and concave cells are very different. But when the cell is convex, there are two stable states with positive
F or negative F . However, we find that the detachment processes of these two kinds of convex cells are qualitatively
the same as shown in Fig. S12.
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V. THE RANGES OF PARAMETERS

In Table S1, we have discussed the range of the parameters we used in the simulation based on experimental data.
In the phase diagram of cell shapes (Fig. 3 in the main text), we found that other variables, such as the stiffness of
cantilever k, cell size r0, the separation of the adhesive surface and cantilever H0, and adhesion energy density Γ0,
are very important control parameters. Therefore, here we further discuss the realistic ranges of these parameters.

The adhesion energy density Γ0 used in the phase diagram is in the range of 0 ∼ 10−3J/m2, which covers the
range of the adhesion energy density used in experiments (around 10−4J/m2) (Colbert et al., 2009, 2010; Chu et al.,
2005). In our simulation, the cell diameter 2r0 is 21µm and 36µm, and the separation of the adhesive surface and
cantilever H0 is smaller than 2r0. This is consistent with the fact that the cell diameter 2r0 is around tens of microns
in the experiments (Fouchard et al., 2014; Fischer-Friedrich et al., 2016; Chaudhuri et al., 2009; Stewart et al., 2013;
Webster et al., 2014; Thoumine and Ott, 1997; Desprat et al., 2005; Mitrossilis et al., 2009).

Based on the phase diagrams in Fig. 3 of the main text, it can be found that the unstable states are only shown
when the cell is small. Therefore, to avoid the unstable states, one should use big cells for the measurements. In the
case of small cells, the spontaneous rupture only appears when the separation of the adhesive surface and cantilever
H0 is big and the stiffness of the cantilever k is small. In contrast, the collapse of cell occurs when the cantilever is
very soft.

In Fig. 3(a) and (b), we use k = 0.5N/m, which is consistent with the order of the stiffness of atomic force
microscope cantilever (around 0.1N/m) used in the experiments (Fischer-Friedrich et al., 2016; Chaudhuri et al.,
2009; Stewart et al., 2013; Webster et al., 2014). In contrast, in Fig. 3(c) and (d), we use k = 0.005N/m and
k = 0.01N/m, which corresponds to the microplates manipulation experiments where the stiffness of the flexible
microplate k is on the order of 0.001–0.01 N/m (Fouchard et al., 2014; Thoumine and Ott, 1997; Desprat et al., 2005;
Mitrossilis et al., 2009). Especially, when the flexible microplate is too soft, the cell height can decrease almost to
zero when a cell spreads between a flexible microplate and a rigid microplate (Mitrossilis et al., 2010). The stiffness
of flexible microplate in their experiment is 0.005N/m, which is the value we used in Fig. 3(c).
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VI. THE QUANTITATIVE COMPARISONS WITH EXPERIMENTS

As shown in Fig. S13, we quantitatively compare the results of our model with three typical experiments, i.e.,
the spreading of cells adhered between two surfaces (Fig. S13(I) and (II)), cell compression (Fig. S13(III)), and cell
detachment (Fig. S13(IV)).

For the comparisons with these experimental results, we only change the stiffness of cantilever k, the initial com-
pression of cell d0, the adhesion energy density Γ0, the unloaded dissociation rate of receptor-ligand pair k0off , the cell

size r0 (regulated by the reference radius re), and the membrane elastic modulus Em to fit these experimental results,
since they are different in these experiments. In contrast, other parameters in Table S1 (Supplementary Material) are
fixed.

In Fig. S13(I), we compare the dynamic adhesion results of our model with the experimental results when a cell
spreads between two microplates (Fouchard et al., 2014). In these experiments, both the contact radius, Rc, and the
traction force exerted on cell increase with time during the spreading of cell (Fig. S13(I)). For the solid lines in Fig.
S13(I), the fitting parameters are Γ0 = 5.24 × 10−3J/m2, k0off = 0.028/s, and k = 12.5nN/µm. Other parameters
are shown in Table S1. Notice that, the stiffness of the cantilever, k, in our simulations are the same as the stiffness
of the microplates in their experiment (Fouchard et al., 2014).

As shown in Fig. S13(II), during the dynamic spreading of the cell between the cantilever beam of AFM and a flat
surface, the cell height first decreases and then increases, while the absolute value of the traction force exerted on the
cell first increases and then decreases (Chaudhuri et al., 2009). These are similar to the results of the spontaneous
rupture in our paper (red curves). In this case, the fitting parameters are Γ0 = 2.2 × 10−3J/m2, k = 0.017N/m,
re = 8.2µm, Em = 90kPa, and d0 = 2.3µm.

In Fig. S13(III), we compare the compression results of our model with the results of the compression experiment
carried out with microplates. In this experiment, cell was compressed to 12µm in 10 s (Thoumine and Ott, 1997).
It was found that the cell would shorten as it is compressed in the experiment. At the same time, the compression
force first increases and then relax to an equilibrium value within 20 minutes. As confirmed by our simulation results
(red lines in Fig. S13III), this relaxation may be induced by the efflux of water and ions. The fitting parameters
for this experiment are re = 6.5µm, Em = 314kPa, Lp = 4 × 10−11m/(Pa.s), Γ0 = 1 × 10−7J/m2, k0off = 0.01/s,
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16

k = 0.01N/m, and d0 = 12µm. Notice that, we also change the rate constant of water transport, Lp, in this
comparison, since we need to regulate the time scale of relaxation.

In the detachment experiments carried out with micropipette aspiration (Fig. S13(IV)), the authors showed that
the detachment results of cell under different membrane tension γ, i.e., for different suction pressure (Pierrat et al.,
2004). In our simulation, we change the initial compression distance of cell, d0, to fit these results. The fitting
parameters for this experiment are k = 50N/m, Γ0 = 7.4× 10−5J/m2, k0off = 0.01/s. Furthermore, d0 = 1.7µm for
the triangular curves, d0 = 2.1µm for the square curves, and d0 = 2.9µm for the circular curves. Notice that, in the
detachment experiment carried out with micropipette aspiration, the cell is held firmly by the micropipette tip so
that we use a very high cantilever stiffness k = 50N/m to fit the experimental data. And the contact radius between
the cell and the micropipette is assumed to be constant as proposed by a previous model (Lin and Freund, 2007).

TABLE S1 Parameters used in the simulations

parameter description value (Ref)
hc Thickness of cortical layer (nm) 400 (Tinevez et al., 2009)
hm Thickness of membrane layer (nm) 5 (Mitra et al., 2004)
Em Elastic modulus of membrane (kPa) 100 (Hochmuth and Mohandas, 1972)
b The exponential constant of the reservoir model 2
Ac/As Reservoir size 1.1(Figard and Sokac, 2014)
η Viscosity of cortical layer (Pa · s) 5000 (Evans and Yeung, 1989)
σa Active stress of actin cortex (Pa) 400 (Hui et al., 2014)
σc Threshold stress of MS channels (Pa) 900
σs Saturating stress of MS channels (Pa) 4000
∆Πc Critical osmotic pressure difference of ions pump (GPa) 30
Πout Osmotic pressure outside the cell (MPa) 0.5 (Tinevez et al., 2009)
re Reference radius of cell (µm) 8
Lp Rate constant of water transport (m.s−1Pa−1) 10−9

β Rate constant of ions flux across MS channels (mol.m−2.s−1Pa−2) 2× 10−11

γ Rate constant of ions flux across ion pump (mol.m−2.s−1Pa−1) 10−17 (Larsen et al., 2007)
a The characteristic length of the bond (nm) 1 (Thoumine and Meister, 2000)
kBT Thermal energy (pN.nm) 4 (Erdmann and Schwarz, 2004)
Ve Rupture energy of single bond (pN.nm) 40 (Freund, 2009)
k0off Unloaded dissociation rate (s−1) 0.01 (Thoumine and Meister, 2000)
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E. Fischer-Friedrich, A. A. Hyman, F. Jülicher, D. J. Müller, and J. Helenius, Scientific reports 4 (2014).
S. Sukharev, B. Martinac, V. Y. Arshavsky, and C. Kung, Biophysical Journal 65, 177 (1993).
H. Jiang and S. X. Sun, Biophysical journal 105, 609 (2013).
J. Dai and M. P. Sheetz, Biophysical journal 77, 3363 (1999).
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